The Economics of Renewable Energy in the Caribbean

The Institute of Chartered Accountants of the Caribbean June 29, 2013

Roger Blackman Barbados Light & Power Company

Introduction

- Several factors affect the economics and rate of development of Renewable Energy (RE):
 - **Resource Availability**: Natural resources vary by country and location.
 - Technology Availability: Is hardware technically proven and commercially available?
 - Technology Cost: What does it cost to build and operate?
 - Energy Cost: Impact on electricity prices and how does it compare with competing technologies?
 - Financing Options: What financing mechanisms and terms are available?
 - Transmission Issues: How close is the resource to the grid and what will it cost to connect?
 - Environmental Issues: What impacts will the RE options have on the environment?
 - Land-use policies: Is the required land available and what are the competing interests?
 - Policy & Legislative Framework: Is there a supporting policy and legislative framework?
 - **Regulatory Framework:** Is there a supporting regulatory framework?
 - **Social acceptance:** What are public attitudes toward specific RE technologies?
 - There is no 'one-size-fits-all' solution

- Review factors that affect RE development
- Review best-practices in electricity planning for achieving 'optimal' energy mix
- Discuss some of the critical success factors:
 - Integrated Resource Planning Approach
 - Supporting Policy & legislative Framework
 - Independent Regulatory Framework

Presentation Overview

- Energy Basics
 - Definitions and Concepts
- Energy Supply Options & Characteristics
 - Overview of Energy Sources
 - Firm & Intermittent Energy Resources
- Economic Evaluation of Renewable Energy
 - Levelised Energy Costs
 - Integrated Resource Planning
- Conclusion
 - Critical Success Factors

Energy Basics

Common Energy Units

- Electrical energy typically measured in kilowatt-hours (kWh)
 - Power (Watts) x Time (hours)
- Fuel energy typically measured in millions of British Thermal Units (mmBTU)
 - 1 BTU is the amount of energy required to heat 1lb of water by 1 degree F
 - 1 BTU = 3,412 kWh
 - Approximate present cost of fuels commonly used in Caribbean:
 - Heavy Fuel Oil US\$19/mmBTU
 - Diesel US\$24/mmBTU
 - Natural Gas US\$4 to 14/mmBTU
- Efficiency of Electricity Production
 - 'Electrical Energy Output / Fuel Energy Input' expressed as a percentage; or,
 - 'Fuel Energy Input / Electrical Energy Output' expressed as BTU/kWh

Energy Consumption in Everyday Life

40W light bulb (continuous operation): ≈ 1kWh per day

Average Barbadian home: ≈ 8 kWh per day

2,500 Calories per day = 3 kWh per day

30 kWh per day (30km per day @10 km/litre)

Conventional Car Gasoline cost in B'dos – US\$1.60 per litre Fuel consumption – 10 km per litre

US\$0.16 per km

Electric Car Range – 121 km per charge Battery capacity – 24 kWh Electricity cost (in Barbados) – US\$0.36 per kWh

How is Energy Valued?

Ξ

Energy sources traditionally valued based on:

- Availability
- Ease of storage and transport _
- Efficiency of conversion to useful energy
- **Energy Density**

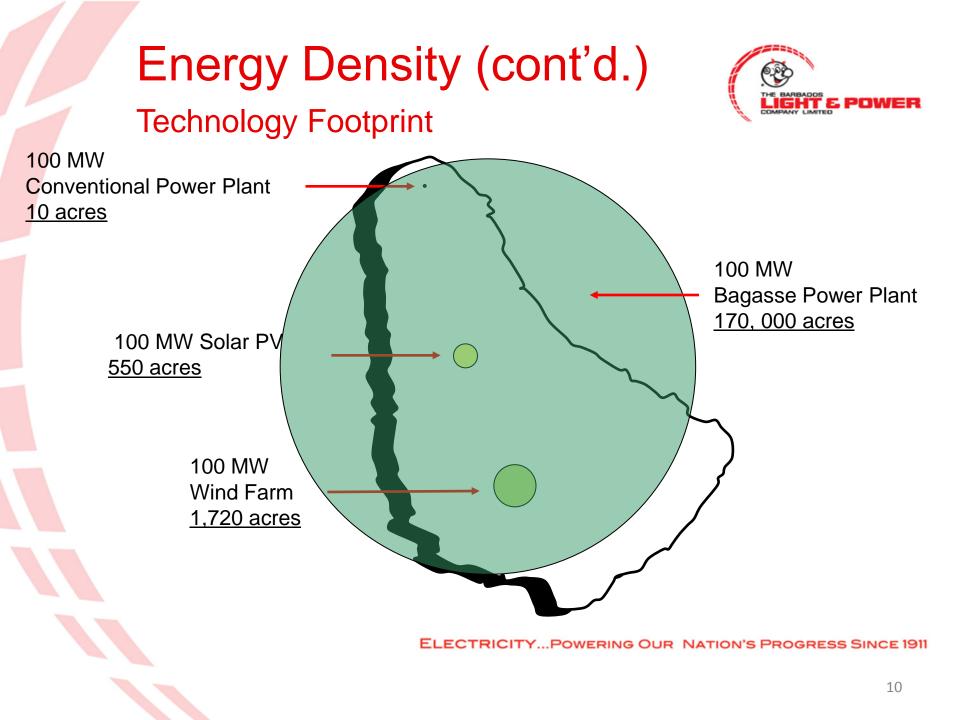
Wood

5 lbs Bagasse

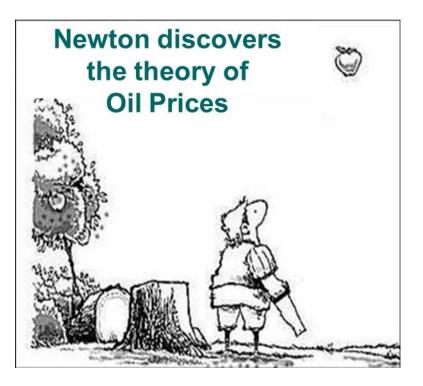
Ξ

21,000 AA-batteries

Ξ



1 lb Uranium-235


1.8 million lbs Oil

Value of Renewables

- RE technologies address several challenges posed by fossil fuels:
 - Energy Security
 - Environmental Impact
 - Depleting Resource
 - Price Volatility

Energy Supply Options & Characteristics

Energy Supply Options

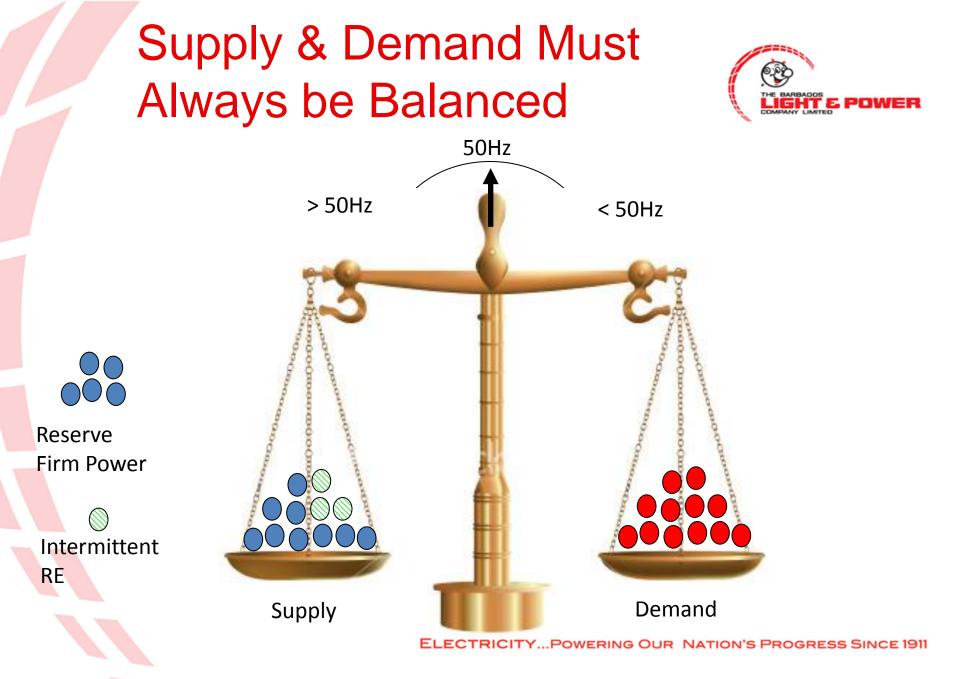
- Renewable:
 - Wind
 - Solar PV / Thermal
 - Biomass
 - Geothermal
 - Hydro
 - Landfill Gas-to-Energy
 - Waste-to-Energy
 - Energy Efficiency
 - Ocean Thermal Energy Conversion
 - Wave
 - Tidal

- Non-Renewable:
 - Use Conventional Fuel more efficiently
 - Natural Gas
 - Coal / Pet Coke

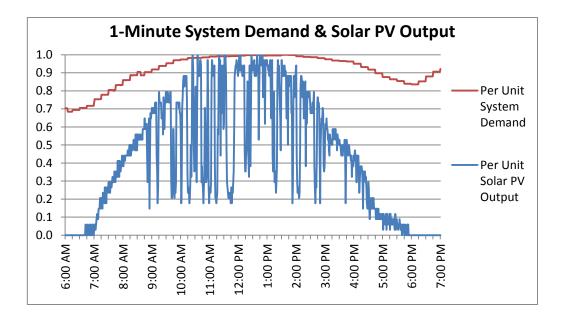
ELECTRICITY ... POWERING OUR NATION'S PROGRESS SINCE 1911

Technically & Commercially Proven

Under Development


Firm & Intermittent RE

• Firm RE


- Electrical output can be dispatched as required
 - Biomass
 - Geothermal
 - Hydro
 - Landfill Gas-to-Energy
 - Waste-to-Energy

- Intermittent RE
 - Electrical output cannot be dispatched, i.e. it is limited by the availability of the energy source
 - Solar PV
 - Wind
 - Special considerations required for grid interconnection of intermittent RE to maintain network stability and reliability

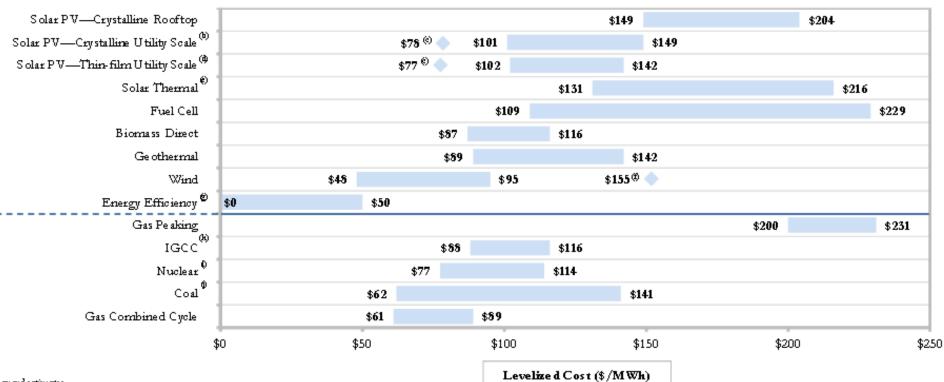
Solar PV Example

• Potential Solutions:

- Geographic diversity of distributed solar PV
- Storage technologies
- Operating reserve margins
- Intermittent RE Penetration Study should be conducted

Economic Evaluation of RE

Levelised Cost Of Energy



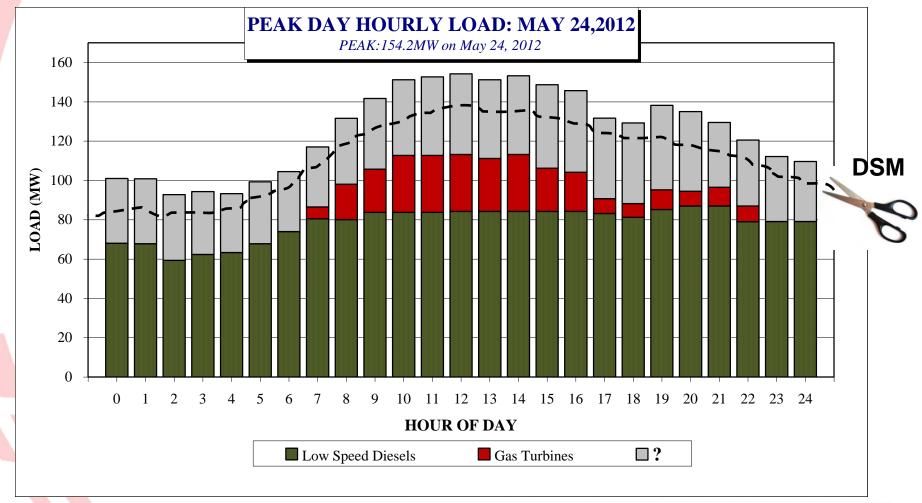
 Levelised Cost of Energy (LCOE) methodology compares the life-cycle cost of producing a unit of electricity from various technologies

- Convenient summary measure of the overall competitiveness of different generating technologies
- Useful tool for policy discussions
- Evaluates technologies on a 'stand-alone' basis and therefore cannot be used to determine expansion requirements

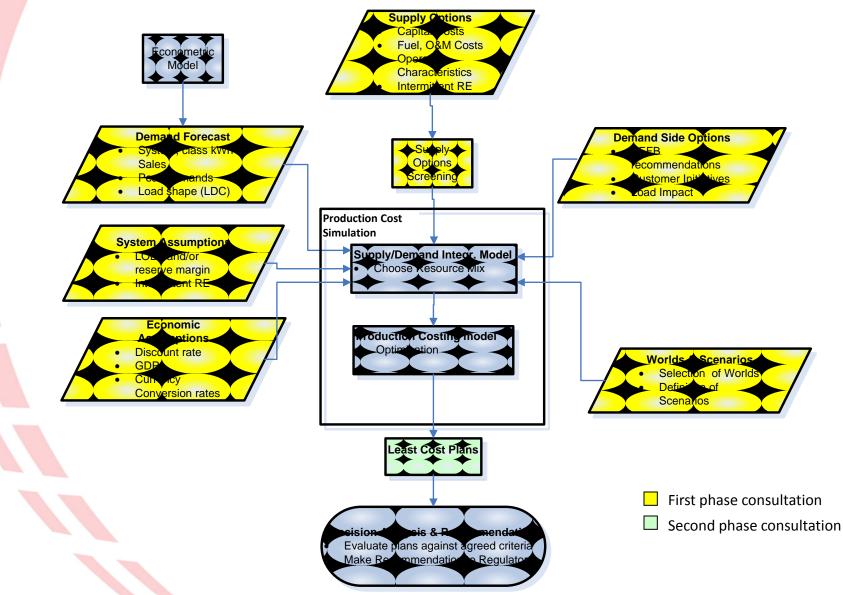
LCOE Comparison (2012 analysis)

Layard estimates

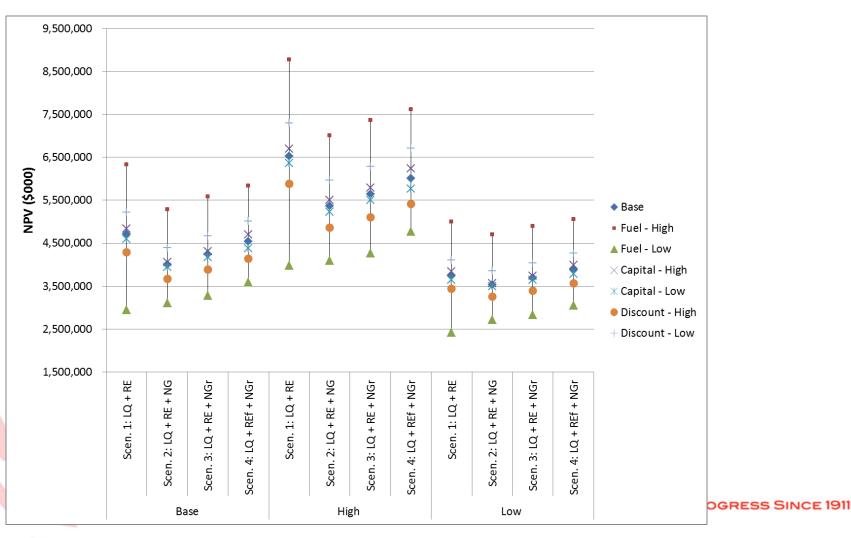
Source: Lazard Levelized Cost of Energy Analysis – June 2012


Integrated Resource Planning (IRP)

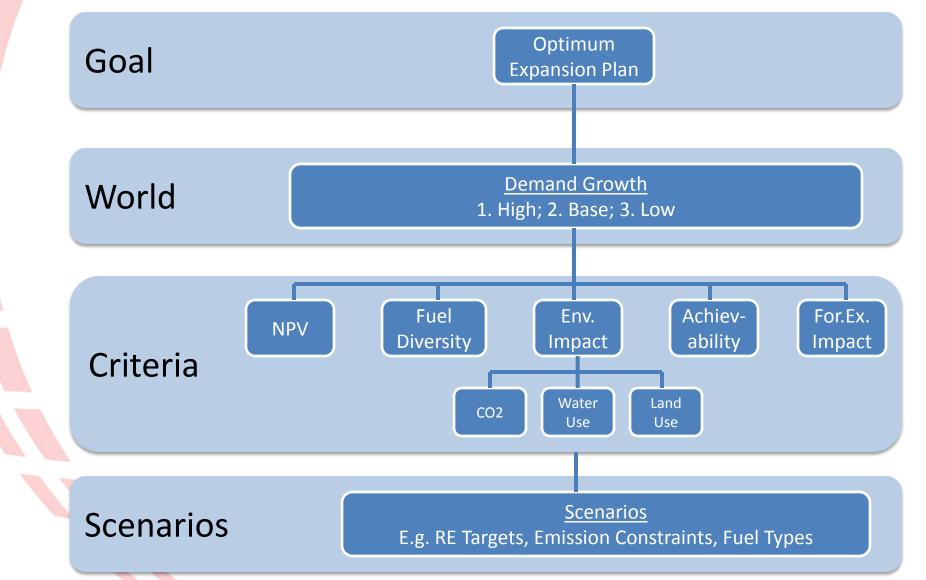
- Electricity planning best practice to determine long-term (20 to 30 years) 'road-map' for reliable least-cost electricity supply
 - Identifies 'optimal' mix of RE and conventional technologies
- Considers trade-offs between financial and non-financial criteria e.g. environmental impacts and energy security
- Involves public participation
- Considers all resources
 - **Supply-side**: Electricity generating technologies
 - **Demand-side**: Energy efficiency or other measures which modify consumer demand


Demand Side Resources

IRP Process



Sample IRP Output



NPV & Sensitivity Analysis

Sample IRP Output (cont'd.)

Decision Hierarchy

Sample IRP Output (cont'd.)

IRP Sample Criteria Achievement Table

							Foreign		2017 Gas
			CO2 (million	Water (million	Land Use	Fuel	Exchange		Interruption
Worlds	Scenarios	NPV (\$000)	MT)	Ga)	(acres)	Diversity	(\$000)	Achievability	Cost (\$000)
Base	LQ + RE	4,718,007	17,874	2,736	552	34.30%	4,192,718	High	
	LQ + RE + NG	4,003,169	13,513	4,475	385	37.28%	3,696,372	Medium	102,410
	LQ + RE + NGr	4,242,772	15,019	978	66	59.78%	3,856,238	Medium	59,236
	LQ + REf + NGr	4,539,107	12,614	2,948	1,026	71.95%	3,928,066	Low	43,345
High	LQ + RE	6,533,100	27,677	2,885	583	26.85%	5,906,882	High	
	LQ + RE + NG	5,370,996	13,847	6,471	767	65.90%	4,721,986	Medium	
	LQ + RE + NGr	5,647,944	24,273	1,952	773	67.10%	5,084,604	Medium	
	LQ + REf + NGr	6,009,076	20,751	4,646	1,045	75.58%	4,987,311	Low	
Low	LQ + RE	3,743,509	12,674	2,633	537	43.16%	3,263,432	High	
	LQ + RE + NG	3,527,547	10,785	3,066	14	43.87%	3,267,055	Medium	
	LQ + RE + NGr	3,691,844	11,428	837	34	48.14%	3,370,626	Medium	
	LQ + REf + NGr	3,890,652	9,506	2,735	196	74.13%	3,372,432	Low	

Conclusion

Critical Success Factors

for the cost efficient and sustainable deployment of RE

- Integrated Approach to Resource Planning
 - Consider both supply and demand resource options
 - Scenario planning: Identify least-cost solutions for a variety of plausible scenarios
 - Consider non-financial criteria guided by Gov't policy e.g. environmental, energy security
 - Stakeholder consultation and participation
- Supportive Government Policy and Legislative Framework
 - Ensure reliable and cost-effective power supply
 - Maximise efficiency in production, distribution and end-use of electricity
 - Reduce dependence on oil where economically feasible
 - Balance economic, environmental and security priorities
- Independent Regulatory Framework
 - Free from undue political or other influences
 - Stakeholder consultation and participation
 - Consistent and transparent decision making processes

Thank you!

which is supported by the self-

THE BARBADOS LIGHT & POWER COMPANY LIMITED

